
The QMUL Team with Probabilistic SQL at Enterprise Track

Thomas Roelleke Elham Ashoori Hengzhi Wu
Zhen Cai

Queen Mary University of London

Abstract

The enterprise track caught our attention, since the
task is similar to a project we carried our for the
BBC. Our motivation for participation has been
twofold: On one hand, there is the usual challenge
to design and test the quality of retrieval strategies.
On the other hand, and for us very important, the
TREC participation has been an opportunity to in-
vestigate the resource effort it requires to deliver a
TREC result.

Our main findings from this TREC participation
are: 1. Through the consequent usage of our prob-
abilistic variant of SQL, we could describe retrieval
strategies within a few lines of code. 2. The pro-
cessing time proved sufficient to deal with the col-
lection. 3. The abstraction-oriented data modelling
layers of our HySpirit framework enable relatively
junior researches to explore a TREC collection and
submit runs. 4. For the less complex retrieval tasks
(discussion search, known-item search), minimal re-
sources lead to acceptable results, whereas for the
more complex retrieval tasks (expert search), inclu-
sion and combination of all available evidence ap-
pear to significantly improve retrieval quality.

1 Introduction

The enterprise track at TREC caught our atten-
tion, since at QMUL we carried out an expert search
project with the BBC. In that project, several highly
heterogeneous data sources needed to be explored
for creating expert profiles, and the customisable
ranking of experts in a number of different contexts
was required.

Through the BBC and several other projects, we
learned that the ability to adapt to the requirements
of the customer is crucial. Also, alive data sources
are highly complex and comprise both SQL-like and
text-like data. Because of the many heterogeneous

systems involved, the semantic data exploration is a
highly challenging task.

Because of these requirements in real-world enter-
prise search, our approach is to use an integrated
DB+IR technology for building customised search
systems. Our system (referred to as HySpirit) is
built on the results reported in [FR97] and [FGR98].
Since 2000, improvements in usability, robustness,
efficiency and scalability have been achieved, most
of which have been not reported yet in academic
publications.

This TREC report contains a description of our
probabilistic SQL (PSQL) layer. This SQL-like ap-
proach to information retrieval is for many compara-
ble to what is presented in [GF98], who report in the
respective section that probably [Bla88] and other
authors in the late 80s (following the early work
[Cra81]) applied SQL for text retrieval. As we will
point out in this paper, our SQL-like approach to in-
formation retrieval provides a high abstraction layer,
i.e. different from [GF98] and others, in which the
scoring function is an explicit piece of math, our ap-
proach is to provide concepts of probability theory.
The list of approaches to apply DB technology for
text search or to integrate DB technology with text
search is endless, and just to mention few: [DM97]
is an attempt in the DB field to integrate DB-like
and text-like search. [Hie03] is an IR approach for
using DB-like technology for XML retrieval. [RR02]
is an excellent contribution in pointing out that the
usual aggregation functions of SQL in a probabilistic
framework yield the expectation value of attribute
values. This underlines that the bare SQL aggre-
gation functions are different from the probability
aggregation in a probabilistic database. Other re-
cent developments in the field include [DS04] and
[LCIS05]: The DB-approach to ranking with SQL
emphasizes efficient query processing. Also, the DB
attention to the field shows that PSQL is not only
from an expressiveness point of view, but also from
the support and attention it gets in the DB research,



a promising candidate for solving future retrieval
tasks.

Whereas the application of SQL for text retrieval
is somewhat intuitive (just model a collection as
a relation “index(term, document)” and perform
SQL statements), scalability is a significant draw-
back of such an approach. Of course, DB vendors
are aware of this, and therefore offer SQL/Text,
SQL/Multimedia, and other SQL variations, in
which special data types and operators take care of
text and multimedia objects, i.e. an inflation of tu-
ples is avoided, and the database systems provide
special operators and indexing structures to deal
with large attribute values. This approach is suf-
ficient if a customer is satisfied with the burned-in
retrieval strategies defined for the special attribute
values.

However, customisation of retrieval strategies is the
requirement in enterprise search environments, and
we wish to combine the evidence from structured
and unstructured data sources in a well-defined
framework. [Haw04] is an inspiring contribution on
what makes enterprise search different from “nor-
mal” search.

For the customisation typical for enterprise search,
probabilistic relational algebra/SQL provides the re-
quired flexibility and expressiveness.

Search tasks such as discussion search, known-item
search, and expert search involve the implementa-
tion of different (customised) retrieval strategies.
Rather than using an existing IR system and playing
with the parameter setting or modifying the source
code, our approach is to use strictly the underlying
concepts of database technology. As there are ex-
pressiveness and scalability problems when apply-
ing classical SQL in large-scale IR applications, we
developed a new probabilistic SQL platform with
a particular emphasis on achieving an integrated
DB+IR platform.

For making explicit what distinguishes a DB+IR
SQL from an SQL-based IR implementation, we
summarise in section 2 the intuitive way of an SQL-
based IR implementation, and show in section 3
the probabilistic extension. Then, in section 4, we
present our results for the discussion and known-
item search tasks; for these two tasks, we applied
the same strategies. For expert search, we defined
tailored strategies in PSQL, and the strategies and
results are discussed in section 5.

This is the first year, QMUL participated in TREC.
We mainly focused on the power of our retrieval en-
gine in building an ad-hoc search system with min-

imal resources. Since one of our master students
became interested in the enterprise track, we gained
the required resources and could participate. For the
expert search task, we restricted the search/evidence
space to the emailing lists only, i.e. we did not con-
sider the evidence available in web pages, and the
other sub-collections of enterprise track.

2 Modelling Information Re-
trieval with SQL

2.1 Representation of collection and
query

The basic idea of modelling text document retrieval
with SQL is to represent the collection and the query
in relations (tables) such as the following:

collection(term, doc)
query(term)

For example:

Relation collection
term document
sailing doc1
boats doc1
sailing doc2
sailing doc2
boats doc2
east doc2
coast doc2
sailing doc3
sailing doc4
east doc5

The example is constructed so that the reader can
easily follow the computations in the following sec-
tions. The collection is represented in ten tuples.
We consider five documents, and four terms. The
tuple ”(sailing,doc2)” occurs twice, all other tuples
occur just once.

Of course, the relational representation of this
content-oriented index is expensive with respect to
disc space, and the large amount of tuples in a rela-
tion is a problem for classical relational databases.
For this, the HySpirit system provides special op-
erations and index structures, and some techniques
are indicated in section 3 on probabilistic SQL.

From the basic relation representing the content of
the documents (collection), document and term fre-
quencies are derived in the following sections.



2.2 Document and term frequencies

For illustrating the description of the inverse
document frequency, we create first a table
doc freq(term,value) in which doc freq.value repre-
sents the number of documents in which the term
occurs.

Consider the following SQL statement and its result
in relation doc freq:

INSERT INTO doc freq
SELECT term, count(DISTINCT doc)
FROM collection
GROUP BY term;

Relation doc freq
term value
sailing 4
boats 2
east 2
coast 1

Next, we derive the number of documents, and com-
pute the idf-value for each term.

INSERT INTO number of docs
SELECT count(DISTINCT doc)
FROM collection;

INSERT INTO idf
SELECT term,
log(number of docs.value / doc freq.value)
FROM doc freq, number of docs;

So far for the computation of idf-values. Next, we
compute the term frequency (tf) values. The within-
document term frequency is expressed via the fol-
lowing statement:

INSERT INTO term freq
SELECT term, doc, count(*)
FROM collection
GROUP BY term, doc;

For our toy collection, we obtain:

Relation tf
term doc value
sailing doc1 1
boats doc1 1
sailing doc2 2
boats doc2 1
east doc2 1
coast doc2 1
sailing doc3 1
sailing doc4 1
east doc5 1

More complex but more effective methods known
from BM25, in which the term frequency is reflected
by the factor n(t)/(K+n(t)) can be expressed as well
in SQL; just the aggregation expression becomes
more complex to formulate.

2.3 Retrieval

For retrieval, basically, the relation representing the
query is joined with the relations representing the
document and term frequencies.

SELECT tf.doc, sum(idf.value * tf.value)
FROM query, idf, tf
WHERE query.term = idf.term
AND query.term = tf.term
GROUP BY tf.doc

The above SQL-based modelling of information re-
trieval appears intuitive to the database expert,
though, despite the welcome abstraction provided
by SQL, SQL is not used for implementing large-
scale information retrieval tasks and systems. Why?
Because the abstraction is actually not great. The
SQL programmer has to specify the computation of
frequencies and the retrieval status value in a rather
physical way. Secondly, the SQL-based modelling
of IR has significant scalability problems because of
the group-by and aggregation operations involved.
These operations do not scale for the basic mod-
elling shown above, since with each new tuple arriv-
ing in the collection table, the frequencies need to be
computed. Even if this could be solved (for exam-
ple, by using special indexes or materialised views
as they are applied in data-warehousing when ag-
gregating large amounts of data), the computation
of the retrieval status value involves a non-scalable
distinct selection. The more document a term re-
trieves, the longer the distinct selection will take to
be computed.



For improving abstraction and scalability of SQL,
we developed a probabilistic SQL variant based on
[FR97].

3 Modelling Information Re-
trieval with Probabilistic
SQL

3.1 Representation of collection and
query

Collection and query are represented in probabilistic
SQL as they are represented in standard SQL, see
section 2.1.

3.2 Document and term frequencies

In probabilistic SQL, due to the probabilistic
paradigm, we estimate probabilities from frequen-
cies, and for this estimation, probabilistic assump-
tions are specified. As a first example, consider the
creation of a disjoint space of documents.

CREATE VIEW doc space AS
SELECT DISTINCT doc
FROM collection
ASSUMPTION DISJOINT;

Through the above view creation, the probabilistic
table doc space contains the following tuples:

doc space
0.2 doc1
0.2 doc2
0.2 doc3
0.2 doc4
0.2 doc5

The probabilities are not usual attribute values
when working in the paradigm of probabilistic SQL
(PSQL), i.e. PSQL manipulates the tuples based on
the algebra operations but the PSQL programmer
has no direct influence on the arithmetics of proba-
bilities.

Next, we create views for reflecting the document
frequency (df) and inverse document frequency (idf)
of terms.

CREATE VIEW df AS
SELECT DISJOINT term

FROM distinct collection, doc space
WHERE
distinct collection.doc = doc space.doc;

The table distinct collection contains the distinct
tuples of table “collection”. The join of dis-
tinct collection and doc space yields the following
relation for the document frequency:

df
0.8 sailing
0.4 boats
0.4 east
0.2 coast

Given the document frequency, the following view
creation allows for assessing a term probability
which corresponds to the idf of a term:

CREATE VIEW idf AS
SELECT *
FROM df
ASSUMPTION MAX IDF;

The assumption max idf normalises the idf values by
dividing each idf-value with the maximal idf-value.
Here, idf(coast) = − log 0.2 is maximal, and we ob-
tain:

idf
0.139 sailing
0.569 boats
0.569 east

1.0 coast

After having described the inverse document fre-
quency, we describe next the within-document term
frequency. The intuitive n/N -based estimate for the
within-document term frequency is described as fol-
lows:

CREATE VIEW tf AS
SELECT DISJOINT term, document
FROM collection
ASSUMPTION DISJOINT
EVIDENCE KEY (2);

Note that in contrast to the creation of the df-table,
we base the tf-view on the non-distinct relation “col-
lection”, so to capture the non-distinctness of tuples
in the probabilities generated for the tf-view. The
evidence key is a specialty of our probabilistic SQL:
Here the probabilities shall be normalised for each
document, hence the evidence key contains the sec-
ond attribute of the target list. The above SQL
statement yields the following table:



tf
0.5 sailing doc1
0.5 boats doc1
0.4 sailing doc2
0.2 boats doc2
0.2 east doc2
0.2 coast doc2
1.0 sailing doc3
1.0 sailing doc4
1.0 east doc5

Results from earlier projects (INEX, BBC) and re-
search findings (cite BM25) allow to draw the con-
clusion that the disjointness-based P (t|d) is less ef-
fective than the Poisson-based estimate.

A Poisson-based estimate is described as follows in
probabilistic SQL:

CREATE VIEW tf AS
SELECT DISJOINT term, document
FROM collection
ASSUMPTION POISSON
EVIDENCE KEY (2);

The semantics of the PSQL statements involving
ASSUMPTIONS and EVIDENCE KEYS are de-
scribed in the patent application [Roe03]. Recent
attempts to publish the semantics of PSQL failed so
far, but the semantics will be formally specified in
future publications. The above statements are actu-
ally abbreviations of the probabilistically correctly
extended statements.

3.3 Retrieval

For retrieval, we create a view “weighted qterm” of
weighted query terms:

CREATE VIEW weighted qterm AS
SELECT term
FROM query, idf
WHERE query.term = idf.term;

Given the idf-weighted query terms, the join of
weighted query terms and tf-based document index
yields a tf-idf baseline retrieval result.

SELECT DISTINCT doc
FROM weighted qterm, tf
WHERE weighted qterm.term = tf.term;

The distinct aggregation of document tuples is here
based on an independence assumption. Alterna-
tively, we can normalise the weighted query terms,

and form as usual a weighted sum of tf-idf values;
this corresponds in probabilistic SQL to a disjoint-
ness assumption.

For enterprise track, we experimented with a num-
ber of different probabilistic aggregations. This is
reflected in the next sections (sections 4 and 5) in
which we report on discussion, known-item and ex-
pert search.

4 Discussion and Known-Item
Search

For known-item and discussion search, we ran sev-
eral strategies where we varied the probabilistic
aggregation of term probabilities, and applied for
each probabilistic variation a stemmed and an un-
stemmed match.

1. idf-based with independence assumption on
query terms (section 4.1)

2. tf-idf-based with independence assumption on
query terms (section 4.2)

3. tf-idf-based with disjointness assumption on
query terms (section 4.3)

The different strategies are reflected in our run iden-
tification consisting of “qmir”, and ’dj’ or ’dt’ for
disjoint and distinct, and ’s’ or ’u’ for stemmed or
unstemmed.

Since for both, discussion and known-item search,
the requested items were emails, we did not cus-
tomise the strategies for the respective tasks. Actu-
ally, we expected for discussion search that the re-
trieved items should have been email threads rather
than individual emails, in which case different re-
trieval strategies for discussion search and known-
item search would have been reasonable.

The following sections describe briefly the rationales
of the strategies, where our main aim is to investi-
gate the effect of idf and probabilistic assumptions
for the aggregation of the evidence each query term
contributes to the retrieval status value (RSV).

4.1 Strategy 1: idf-based, indepen-
dent query terms

As the very first strategy, a simple idf-based rank-
ing method was applied. This strategy involves the
definition of a view for the idf relation:



CREATE VIEW df AS
SELECT term FROM collection;

CREATE VIEW idf AS
SELECT term FROM df
ASSUMPTION MAX IDF;

Apart from the ASSUMPTION clause, this is SQL
as usual. The view for the document frequency (re-
ferred to as df-view) is here a helper for defining
the idf-view. The df-view is inserted into the view
definition of the idf, and based on a special index-
ing structure for probabilistic relations, we retrieve
idf-based term probabilities in O(1).

Given the idf-view, we define the weighted query
terms as the join of query terms and idf:

CREATE VIEW weighted query AS
SELECT term FROM query, idf
WHERE query.term = idf.term;

Now, in relation weighted qterm, each query term
has a probability reflecting the idf, i.e. probabilities
are high for rare terms, and small for frequent terms.

The weighted query terms are then matched against
the term index, and the probabilities need to be ag-
gregated for obtaining a retrieval status value.

SELECT DISTINCT doc
FROM weighted query, doc index
WHERE weighted query.term = collection.term;

For a distinct selection, per default, an indepen-
dence assumption is applied.

The relation “collection” is non-distinct, i.e. the join
delivers a tuple for each occurrence of a query term
in the collection. Through this, the independent
projection aggregates the idf-based term probability
proportional to the number of times a query term
occurs in a document. From this point of view, this
first simple strategy is not just an idf-only strategy,
since the within-document term frequency has an
effect on the RSV.

Let P (t|q, c) be the idf-based probability of a term
given, given query q and collection c. P (t|q, c) is
the probability function in relation weighted qterm,
and the function is defined through the above SQL
as follows:

P (t|q, c) :=
{

Pidf (t|c) if t ∈ q
0 otherwise

Let d be a document. The RSV implemented by the
above SQL based on an independent aggregation of

probabilities is as follows:

RSV (d, q) = 1−
∏
t∈d

(1− P (t|q, c))

Frequent terms with P (t|q, c) ≈ 0 have little effect
on the RSV , whereas rare terms with P (t|q, c) >> 0
have a strong effect. With each occurrence of t in
d, the idf-based probability P (t|q, c) is taken into
account. One could interpret the above RSV as a
probabilistic disjunction of query term occurrences
in the respective document, where each occurrence
has the idf-based probability P (t|q, c).
If there exists one P (t|q, c) = 1, then RSV (d, q) = 1.
The explanation of this is as follows: If the query
involves a term which occurs in just one document,
then P (t|q) = 1. The document retrieved with re-
spect to the query is assumed to be top relevant
since the term occurs only in this particular doc-
ument. For example, let the query be ”t1 t2 t3”.
Then, if the query terms are maximal informative,
each document containing one of the terms will be
judged top relevant. The obvious problem with a
non-weighted probabilistic disjunction is of course
that there is no discrimination between documents
that contain one, two or three of the query terms. To
counter for this, we apply a normalisation on query
terms:

CREATE VIEW weighted query AS
SELECT term FROM query, idf
WHERE query.term = idf.term
ASSUMPTION DISJOINT;

Here, the assumption disjoint leads to a probabil-
ity distribution in relation weighted query where the
tuple probabilities sum up to 1.0.

For the selection (retrieval) of documents, a disjoint-
ness assumption is not applicable, since the relation
“collection” is not distinct. This is exactly what
the next strategies address: Instead of the simple
retrieval based on the raw collection representation,
we create for the next strategies a distinct represen-
tation of the collection in a tf-based relation with
terms and documents, where the probabilities reflect
the multiple (non-distinct) occurrences of terms.

4.2 Strategy 2: tf-idf-based, indepen-
dent query terms

Different from strategy 1, we apply now a distinct
representation of the collection. We create a tf-
based representation with the following view:



CREATE VIEW tf AS
SELECT DISJOINT term, document
FROM collection
ASSUMPTION POISSON
EVIDENCE KEY (2);

When retrieving documents, we match now the idf-
based query terms with the tf-based representation
of the collection:

SELECT DISTINCT document
FROM weighted query, tf
WHERE weighted query.term = tf.term;

This SELECT statement implements a tf-idf-based
retrieval function. Here, the aggregation of tf-idf-
based probabilities is based on an independence (the
default) assumption.

4.3 Strategy 3: tf-idf-based, disjoint
query terms

This strategy is virtually the same as the previ-
ous one, except that it assumes disjointness of the
weighted query term. As in section 4.2, first, the
query term are weighted according to their proba-
bility values estimated by IDF. Then we assume that
the query terms are disjoint, effectively normalizing
the probabilities, so that all of them added up to
one. Finally, these probabilities were combined with
TF probabilities to form the ranking probability for
the retrieved documents.

SELECT DISJOINT document
FROM weighted query, tf
WHERE weighted query.term = tf.term;

4.4 Submissions and Results

Table 1 shows an overview over our sub-
mitted runs. The run identifier is con-
structed as follows: qmir-[task]-[distinct|disjoint]-
[(s)temmed|(u)nstemmd]. There is a task identi-
fier ’ki’ for known-item search, and ’ex’ for expert
search, no identifier for discussion search, as these
were the first runs submitted. The abbreviation ’dt’
stands for distinct, and ’dj’ stands for disjoint.

Table 1 shows the expert search runs as well. We
will discuss expert search modelling and results in
section 5.

Table 2 shows the results for discussion search and
known-item search.

The disjointness-based tf-idf strategy, unstemmed,
shows the best retrieval quality. Here, the tf-based
probabilities were estimated based on the Poisson-
like curve tf/(avg(tf) + tf). No normalisation and
no special parameter setting has been applied; the
whole retrieval function is clean of parameters.

The result for the discussion search, namely that
the disjointness-based tf-idf strategy performs best,
is the expected result. The somewhat surprising re-
sult is that the independence-based strategies are
pretty close in retrieval quality. Remember that for
the independence-based strategies, no tf-based rep-
resentation of the collection was created. This is
nice since it facilitates update operations in dynamic
environments, where this result allows us to main-
tain only the raw representation of the collection
and save on the tf-based representation.

For the known-item search, the conclusion is slightly
different, though the marginal difference in MRR
is hardly significant. Here, the disjointness-based
strategy is slightly worse than the independence-
based strategy. In average, if found, the known
item is within the first 3-4 hits. The mismatch ap-
pears to be rather high. Both submitted runs are
unstemmed, that might explain the high percent-
age of not found. For one strategy, there are 28
queries with not found, and for the other, there are
29 queries. This asks for an explanation, since both
strategies use exactly the same termspace, only the
probability aggregation differs. The submissions for
known-item search with stemming unfortunately got
lost somewhere between QMUL and TREC systems.

5 Expert Search

For this task, we implemented basically two strate-
gies: A baseline strategy in which we aggregate the
email RSV’s per author, and a more refined strategy
in which we consider the global and local author con-
tribution, i.e. how many emails does someone write
overall (global contribution), and how many emails
does someone write for the query topic (local con-
tribution).

5.1 Strategy 1: aggregation of email
RSV’s

In this strategy, experts are considered as those peo-
ple who authored an email. In previous projects, we
actually discarded this information, as it appears
more appropriate to identify experts based on the



Submissions
Run identifier Task method
qmir-dj-u Discussion Search tf-idf, disjoint query terms, unstemmed
qmir-dj-s Discussion Search tf-idf, disjoint query terms, stemmed
qmir-dt-u Discussion Search idf, independent query terms, unstemmed
qmir-dt-s Discussion Search idf, independent query terms, stemmed
qmir-ki-dj-u Known-Item Search tf-idf, disjoint query terms, unstemmed
qmir-ki-dj-s Known-Item Search tf-idf, disjoint query terms, stemmed
qmir-ki-dt-u Known-Item Search idf, independent query terms, unstemmed
qmir-ki-dt-s Known-Item Search idf, independent query terms, stemmed
qmir-ex1 Expert Search GCF low, LCF low
qmir-ex2 Expert Search Aggregation of independent email evidence
qmir-ex3 Expert Search GCF low, LCF max
qmir-ex4 Expert Search GCF low, LCF high

Table 1: Submitted runs

Discussion Search
Run identifier MAP Bpref P@10
qmir-dj-u .2860 .3017 .4695
qmir-dt-s .2723 .2777 .4136
qmir-dt-u .2706 .2804 .4576

Known-Item Search
Run identifier MRR (if found) # Not Found
qmir-ki-dj-u 0.360 28 (22.4%)
qmir-ki-dt-u 0.367 29 (23.2%)

Table 2: Results for Discussion Search and Known-Item

emails they received. Since the recipient informa-
tion is not exploitable in the TREC test data (emails
go to lists), we decided as a baseline strategy to re-
trieve the emails for a topic, and then aggregate re-
trieval status values per author to obtain a ranking
of experts. This is very much like passage retrieval
([Cal94]). The processing steps are as follows:

1. Retrieve top-N emails in the same way as dis-
cussion or known-item search strategies

2. Join emails with author relation to obtain au-
thors

3. Rank authors based on the aggregation of email
retrieval status values (RSV’s)

The strategy was submitted under id qmirex2.

5.2 Strategy 2: local and global au-
thor contribution

The processing steps for this strategy are as follows:

1. Retrieve top-N emails

2. Join emails with author relation to obtain au-
thors

3. For each author, compute the collection-wide
(global) email frequency, and compute the lo-
cal email frequency, i.e. the frequency in the
retrieved emails. We refer to the collection-wide
frequency as Global Contribution Frequency
(GCF) (in the collection c), and we refer to
the frequency in the retrieved emails as Local
Contribution Frequency (LCF) (in the set r of
retrieved documents). The frequencies are as
follows:

GCF =
occ(author, collection)

ND(collection)

LCF =
occ(author, retrieved)

ND(retrieved)

Here, c and r are set of documents, and ND(c)
and ND(r) are the numbers of documents in the
respective set.

4. Rank authors based on the global and local con-
tribution.

We submitted runs in which we tested various com-
binations of GCF and LCF.



5.2.1 GCF low, LCF high

qmirex4: We apply a ranking similar to what tf-idf
does for terms: If an author occurs frequently among
the retrieved emails (LCF high) and if an author oc-
curs rarely in the collection (GCF low), then this au-
thor is likely to be an expert in the topic. Thus, we
obtain an author frequency per topic (analogous to
the classical tf, where we model the term frequency
per document), and we obtain an idf of each author
(analogous to the classical idf, where we consider the
idf of a term).

For implementing this strategy, we join the email
retrieval result with the author names.

– Get the authors of retrieved emails
SELECT DISTINCT author
FROM retrieved emails, authors
WHERE retrieved emails.author = authors.name;

The aggregation of distinct tuples applies here an
independence assumption. Alternatively, we could
create a disjoint space of retrieved emails, and sum
per author over the emails he/she sent.

Next, we estimate the inverse global contribution
for each author. Similar to the way we describe the
document frequency of a term in the collection, we
define the global email contribution of an author.
This is simply based on the total number of emails
the person wrote. Then, analogous to idf, we de-
scribe the inverse global contribution frequency:

INSERT INTO inv gcf
SELECT *
FROM gcf
ASSUMPTION MAX IDF;

This gives us the discriminativeness per author. The
idea behind this is that an author who writes in
general few emails, but is frequent for a particular
topic is likely to be an expert.

Then, join local and global contribution frequency
to obtain a ranking of experts.

INSERT INTO experts
SELECT author
FROM lcf, inv gcf
WHERE lcf.author = inv gcf.author;

Since the author relation contains only the email
address, but the submission requires candidate id’s,
we need to join the email address with the candidate
id relation.

Expert Search
Run identifier MAP P@10
qmirex1 0.0941 0.1820
qmirex2 0.0473 0.1100
qmirex3 0.0792 0.1740
qmirex4 0.0959 0.1880

Table 3: Results for Expert Search Task

SELECT candidates.id
FROM experts, candidates
WHERE experts.email = candidates.email;

In addition to this lcf-gcf ranking strategy for ex-
perts, we experimented with alternative combina-
tions and aggregations of the frequencies.

5.2.2 GCF low, LCF low

In this approach we try to find experts who rarely
send emails. If an author does not occur frequently
among the retrieved emails (lcf low) and if an author
occurs rarely in the collection (gcf low), then this
author is likely to be an expert on the topic.

5.2.3 GCF low, LCF max

In this approach, if an author wrote the most rel-
evant email among the retrieved emails (lcf max)
and if an author occurs rarely in the collection (gcf
low), then this author is likely to be an expert on
the topic.

5.3 Results

The results for this task are in table 3. They are
fairly low quality compared to the average quality
achieved for this task. The track organisers conclude
for the expert search that taking into account more
evidence than just the emails is crucial and adds
significant to the achievable retrieval quality.

From this poor result, our main conclusion is that
our high abstraction, and minimal resource and cod-
ing strategy failed to achieve respectable retrieval
quality for the expert search task. For this more
complex search task, more resources appear to have
a significant effect on the achievable retrieval qual-
ity.

We intend to investigate how many person days it
takes to explore the given sub-collections, aggregate
the evidence, and formulate an effective retrieval



function. Further, there is evidence that the inclu-
sion of document length normalisations and statis-
tics on average frequencies into the retrieval strate-
gies does have a significant effect on the retrieval
quality, in particular for complex search tasks in-
volving the aggregation of evidence. Therefore, we
intend to include length and average functions into
our indexes for making respective retrieval functions
efficiently executable in probabilistic SQL.

6 Summary and Conclusions

The enterprise TREC participation was for us a
welcome opportunity to investigate for different en-
terprise search tasks whether our retrieval system
framework based on probabilistic SQL can cope with
TREC-like data, and with how much resource effort
we are able to deliver a TREC result.

The result is that with few lines of code in
probabilistic SQL, respectable retrieval quality can
be achieved for discussion search and known-item
search. We observed that disjointness-based are su-
perior to independence-based strategies; this is the
expected result. The independence-based strategies,
however, are surprisingly close to the disjointness-
based strategies. In a number of project contexts,
users asked us explicitly for independence-based
strategies, as they wish documents to score doc-
uments high even if a document fulfills only one
“good” criteria.

For expert search, we achieved a poor result. The
analysis of the track organisers shows that for this
task, the good performers considered more evidence
than just the email sub-collection. Our analysis is
that a minimal resource strategy is appropriate for
classical retrieval tasks, but as soon as several col-
lections and evidence aggregation enters the stage,
more attention to detail shows a significant improve-
ment of the retrieval quality, and it is our future
aim to optimise the resource effort for achieving a
respectable result.

The year 2005 has seen the first TREC participa-
tion of the QMUL IR group. From the experience
gained we can conclude that participations in the
future are reasonable, since with our experimental
framework, we can explore data and design retrieval
strategies now fairly quickly, even for large data vol-
umes, which has been a problem for a while due to
the high abstraction and expressiveness of the data
models we apply.

Our next steps include strategies for further scal-

ing our SQL-based processing, and to add length
normalisation to the current probabilistic SQL for-
mulation of retrieval strategies.

Thanks to the TREC enterprise and TREC organ-
isers for their effort and excellent support.

References

[Bla88] D. C. Blair. An extended relational document
retrieval model. Information Processing and
Management, 24(3):349–371, 1988.

[Cal94] J. P. Callan. Passage-level evidence in docu-
ment retrieval. In W. Bruce Croft and C. J. van
Rijsbergen, editors, Proceedings of the Seven-
teenth Annual International ACM SIGIR Con-
ference on Research and Development in Infor-
mation Retrieval, pages 302–310, London, et
al., 1994. Springer-Verlag.

[Cra81] R.G. Crawford. The relational model in infor-
mation retrieval. Journal of the American Soci-
ety for Information Science, 32(1):51–64, 1981.

[DM97] Stefan Dessloch and Nelson M. Mattos. In-
tegrating sql databases with content-specific
search engines. In Proceedings of the 23rd Inter-
national Conference on Very Large Databases
(VLDB), pages 528–537, 1997.

[DS04] Nilesh N. Dalvi and Dan Suciu. Efficient
query evaluation on probabilistic databases. In
Mario A. Nascimento, M. Tamer Özsu, Don-
ald Kossmann, Renée J. Miller, José A. Blake-
ley, and K. Bernhard Schiefer, editors, VLDB,
pages 864–875. Morgan Kaufmann, 2004.

[FGR98] N. Fuhr, N. Gövert, and Th. Rölleke. Do-
lores: A system for logic-based retrieval of mul-
timedia objects. In W. Bruce Croft, Alistair
Moffat, C. J. van Rijsbergen, Ross Wilkinson,
and Justin Zobel, editors, Proceedings of the
21st Annual International ACM SIGIR Confer-
ence on Research and Development in Informa-
tion Retrieval, pages 257–265, New York, 1998.
ACM.

[FR97] N. Fuhr and T. Rölleke. A probabilistic rela-
tional algebra for the integration of information
retrieval and database systems. ACM Trans-
actions on Information Systems, 14(1):32–66,
1997.

[GF98] David A. Grossman and Ophir Frieder. Infor-
mation Retrieval: Algorithms and Heuristics.
Kluwer, Massachusetts, 1998.

[Haw04] David Hawking. Challenges in enter-
prise search. In Proceedings of the Aus-
tralasian Database Conference ADC2004,
pages 15–26, Dunedin, New Zealand,



January 2004. Invited paper: url-
http://es.csiro.au/pubs/hawking adc04keynote.pdf.

[Hie03] D. Hiemstra. A database approach to content-
based xml retrieval. In INEX 2002 Workshop
Proceedings, Schloss Dagstuhl, 2003.

[LCIS05] Chengkai Li, Kevin Chen-Chuan Chang,
Ihab F. Ilyas, and Sumin Song. Ranksql: query
algebra and optimization for relational top-k
queries. In SIGMOD ’05: Proceedings of the
2005 ACM SIGMOD international conference
on Management of data, pages 131–142, New
York, NY, USA, 2005. ACM Press.

[Roe03] T. Roelleke. The relational Bayes for frequency-
based and information-theoretic probability es-
timation in a probabilistic relational algebra,
2003. Patent application 0322328.6.

[RR02] John Grant Robert Ross, V. S. Subrahma-
nian. Probabilistic aggregates. In 13th Interna-
tional Symposium on Methodologies for Intelli-
gent Systems (ISMIS), Lyon, France, Founda-
tions of Intelligent Systems. Springer, 2002.


